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II. On Boomerangs.
By G. T. \/VALKER, M.A., B.Sc., Fellow of Trinity College, Cambridge.

Communacated by Professor J. J. Tromson, F.R.S.
Received March 15,-—Read April 8, 1897.

TuE attempts that have hitherto been made to explain the flight of a boomerang
have in general been of a somewhat fanciful nature.

Exception must be made in the case of such papers as those of WERNER STILLE,
“ Versuche und Rechnungen zur Bestimmung der Bahnen des Bumerangs ” (Pocarx-

DORFF, ‘ Annalen der Physik,” Bd. 147, 1872), and of EpMmuNDp GERLACH, ¢ Ableitung

gewisser Bewegungsformen geworfener Scheiben aus dem Luftwiderstandsgesetze”
(¢ Zeitschrift des Deutschen Vereins zur Forderung der Luftschifffahrt, Heft 3, 1886).
In the latter, which is the most noticeable contribution to the subject with which I
am acquainted, the author gives an explanation in general terms of some of the
effects of the air-resistance upon a symmetrical boomerang : he introduces, however,
no analytical treatment of the dynamics of the rotating body and neglects entirely
all consequences of the important deviations from symmetry which I have subse-
quently described as ¢ twisting” and “rounding.” Without one of these a return
flight is, I believe, impossible.

For an account of the native Australian weapons, and in particular those of Victoria,
reference should be made to the very complete descriptions given in Brovem SmyT’s
book, ‘The Aborigines of Victoria,” vol. 1, pp. 811-318; shorter notices are to be
found in books of travel, such as that of Karr Lumuonrz, ¢ Among Cannibals,” p. 50.

Boomerangs may at the outset be divided into two classes—returning and non-
returning ; it is rather on weapons of the latter of these types that the natives of
Australia rely when engaged in war or the chase. A typical returning boomerang
(see fig. 1) resembles in general outline an arc of a hyperbola, and is about 80 centims.
in length measured along the curve. At the centre, where the dimensions of the
cross section (fig. 1’) are greatest, the width is about 7 centims., and the thickness
1 centim. ; these dimensions become smaller as the ends are approached.

As a rule two properties are present. In the first place, the transverse section at
any point would show that one surface possesses distinctly greater curvature than
the other; secondly, the arms of the implement must be slightly twisted (from
coincidence with the.plane through each of them) after the fashion of the blades of a
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24 MR. G. T. WALKER ON BOOMERANGS.

screw propeller or a windmill. The direction of the twist is such that rotation about
a normal to the plane tends to set up linear velocity of the boomerang in the direction
of the vector representing that rotation. These two peculiarities will in future be
referred to as the “ rounding ” and the ¢ twisting.”

A weapon of this type is thrown in a horizontal direction in such a way as to
impart considerable rotation in the vertical plane containing its initial direction of
motion ; the more convex surface is towards the thrower. The plane of rotation
leans slowly over to the right (Z.e., the vector representing the spin begins to point
slightly upwards) and the path curls to the left. The projectile proceeds to describe
a loop whose longer diameter is about fifty yards ; it gradually vises until it reaches
a height which is usually about thirty feet from the ground, travels horizontally for a
time, and then gradually sinks to the earth.

The change in the angular motion has throughout the flight continued unaltered
in character ; the inclination of the plane of rotation to the horizon has steadily
diminished from a right angle to zero, and the axis of the spin has veered continually
to the left (as seen from above) in such a manner that as long as the linear velocity
remains large, the angle between the direction of motion and the plane of rotation
is small.

In the accompanying diagram (figs. 2, 3) a plan and clevation of this, the simplest
form of path, is given. An attempt is made to indicate the inclination of the axis of
rotation by representing at intervals the projection of a line of constant length drawn
along that axis.

If it be not desired to make so large a loop as that described, it is fairly easy to
get the boomerang to describe a circle of thirty-five yards in diameter, without ever
rising to more than twelve feet from the earth.

In the more complicated paths, as long as the velocity remains considerable, the
manner in which the plane of rotation and the direction of motion change is precisely
the same as in the simpler cases; it is the rates of change that differ. The graceful
gyrations that a boomerang performs on its downward course, if the linear velocity
dies out while it is high in the air, present little or nothing that is new in principle.
It is in the explanation of the earlier motion that the problem really lies, and the
observation of actual flights makes it clear that their character is deducible when the
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MR. G. T. WALKER ON BOOMERANGS. 25

two components of angular velocity (denoted subsequently by Q,, Q,), whose axes lie
in the plane of the boomerang, are determined.

The flight may be regarded as a case of steady motion of which the circumstances
gradually vary. It is only with very badly made instruments that small oscillations
are at times perceptible; with ordinary boomerangs, the accident of grazing the
ground or meeting a sudden puff of wind will not cause visible vibrations.

Fig. 2. Plan.

s
\

Sy

2
The scale of this and the following diagrams is 1: 1000, or 28 yards to 1 inch, approximately.

Fig. 3.

v/ “% A

Vi

Elevation upon a vertical plane through AC.

Let the plane containing the arms of the boomerang (in future called the primary
plane) be taken as that of XY, with the centre of gravity as the origin, and the pro-
jection upon this plane of the resultant velocity as OX ; OZ is drawn on the more
convex side. If then the rectangular components of linear and angular velocity of
the body be U, O, W, and Q,, Q,, Q,, it may be observed that W is always small
compared with U, and Q,, Q, compared with Q;. Throughout the motion Q, is
positive, O, negative, and Q, positive. The time of flight is about nine seconds, and
the greatest distance fifty yards; the mean values of @, and Q, may be estimated at
one-sixth and manus one-third respectively, while in C.G.S. units U is two thousand
and Q, is thirty.

The angular velocity ; of the axes is small and positive throughout the motion,
except near the conclusion, when it sometimes vanishes and becomes negative.

For theoretical purposes I have regarded the body as replaced by one of extremely
thin material with the same general shape and twist; the transverse section will be
a circular arc with its convex surface on the same side as the more rounded surface of
the wooden weapon.

Experiment shows that if a thin rectangular plate be advancing with velocity v in
a direction that is inclined at a small angle a to its plane, the air-pressure produces a

VOL. CXC.—aA. ‘ E
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6 MR. G. T. WALKER ON BOOMERANGS.

force and a couple about the centre ; the mean normal pressure per unit area may be
denoted by M*a, where N is a constant that depends on the proportions of the rect-
angle and p is a number which has been often assumed to be equal to 2. In his
“ Experiments in Aerodynamics” (‘ Smithsonian Contributions to Knowledge,” 1891),
S. P. LaNGLEY makes this assumption, but if from Table XIV. the value of u be
calculated by comparing the soaring velocities of 24 X 6 planes, weighing 250 and
1,000 grms. at inclinations of 10° (the smallest inclination quoted), it proves to be
2:7; for square planes of the same weight, inclined at 5°, the index is 2'5. From
comparison of the cases of inclination of 2° and 5° of Table XII., the value 33 of u
may be deduced. In the course of the following analysis it will be seen that progress
is attended with extreme difficulty unless u = 38, and inasmuch as the constant \ is
at our disposal, we shall be justified in taking w == 3 and choosing \ so as to agree
with LANGLEY'S experiments at the mean value of the velocity under discussion.
Any error introduced by an incorrect value of pu will be quantitative rather than
qualitative.

In addition to the uniform pressure acting on the rectangular plate, there will be a
couple whose amount may be taken as kv'e per unit area, « being a constant depending
on the dimensions of the plate.* The assumption of a velocity potential would lead
to the value » = 2,1 while » = 3 is suggested by the previous assumption. In order
to simplify subsequent proceedings we shall choose the smaller value and deduce the
value of « from LANGLEY’s experiments.

We have now to consider the effect of the air on the slightly distorted thin surface
which represents the boomerang, and in order to surmount the difficulties introduced
by the fact that the velocities at different points vary, as well as the directions of
the normals to the surface, we are driven to make some hypothesis.

Now the effect of the air-pressure upon a plane surface in uniform motion may be
obtained by integrating over it, provided that we regard the effect due to aty small
portion as proportional to the area of that portion.

We therefore assume, as a first approximation, that the contribution from any
olement of the distorted surface is the same as if’ the rest of the surface were in the
same plane as the element and had the same velocity ; that this assumption, in the
case of simple distortions, leads to results of the right character, is easily verified.

The determination of « depends on the fact that if’ the width of an arm measured
in the direction of the velocity of the point in question be ¢, and if f stand for the

% Seo Tuomson and Tarr, ¢ Natural Philosophy,” § 325. The existence of this couple is often stated
in the form thab the resultant thrust on the plate docs not act at the centre of figure. LaneLuy finds
(chap. viii., pp. 89-93), that in the case of a square platc the point of application of the resultant
pressure, when « does not exceed ten degrees, is at a distance from the centre of figure equal to about
one-sixth of the length of the side. He quotes Joisser and Kummer as having obtained a fifth and a
sixth respectively as the value of this ratio.

+ Lamp’s ¢ Hydrodynamies,” p. 185 (3) ; Basser’s ¢ Hydrodynamics,” vol. 1, § 190.
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MR. G. T. WALKER ON BOOMERANGS, 27

ratio 1:5 or 1:6 as deduced from experiment, then the couples NU3. ¢f and «U?®
should be the same. This would give a value of x varying from point to point. We
therefore, for convenience, treat x as constant, and give it the magnitude corre-
sponding to the mean value of c. |

It must be realised at the outset that the following analysis does not claim to be
more than a first approximation, in which the quantities neglected may be of a
tenth of the magnitude of those retained. Our knowledge of the laws of the resistance
of the air is not at present great enough for accurate results to be attainable, and 1
have accordingly not hesitated to neglect small terms in order to effect a material
simplication in the mathematical analysis.

It may appear that such processes reduce the method to little more than a
qualitative one, but though much may be done by qualitative methods applied to
this subject, and all the chief terms may be traced to their source without the use of
algebraical symbols, yet, as will soon become clear, the effects of the forces in action
are conflicting. It is therefore necessary, in order to obtain results which are
qualitatively right, to adopt methods which, although not accurate, have at any rate
some approach to quantitative correctness.

We now take axes fixed in the body, 1 and 2 being along and perpendicular to the
axis of symmetry in the primary plane.

Fig. 4.

P

”

If the velocity at any point xyz have components u, v, w, and the direction cosines
of the normal on the convex side there be /, m, n, then the normal pressure in the
direction — [, — m, — n will be

Mg (lu + mo + mv),

where I, m, w are small quantities and ¢* = u®* 4 v? + w?.
The couple per unit area will have moment

kg~ (lu + mv + nw)

about an axis whose direction cosines are
B 2
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28 MR. G. T. WALKER ON BOOMERANGS.
mw — nv, nu — lw, v —mu,

each divided by a quantity differing from ¢ by squares of small quantities. Hence,
if = 8, » = 2, the normal force at any point will be

A? (lw + mv + w),

and the component couples

— kv (lu + mv 4+ w), «u(lu+ mv 4+ w), 0,

where squares of small quantities are omitted.

Now if, due to the rounding,” a transverse line RR’ (fig. 4) through any point P
be a circular arc of radius p, and if its middle point Q have co-ordinates , ¥, then,
denoting QP as measured along the inward normal QN by s, the direction cosines of
the normal at

x4+ scos¢, y-—ssing
will be
scosg - _ssimé
P P

In addition to this the line RR will, owing to the twisting, be turned about the

tangent at Q through an angle which may be taken as _g/_’ where 7 is a constant
T

length. The superposition of this small distortion on the former will add to the
direction cosines terms
ycos ¢ ysing

T T
Let the linear and angular velocities of the body referred to the axes I, 2, 3 be
’M, ?), ’U), (‘)1: 0)2, Wg,

where w is small compared with (u* + v*)* and @, w, compared with w;. The com-
ponent velocities u,, v;, w, of P will then be

u — (y — ssin ¢) o,
» 4+ (x -+ scos @) g,
w — (€ 4+ s cos ¢) w, + (¥ — ssin ¢) w,.

The resultant force due to the pressures will have negligible components parallel
to the axes 1, 2, and the force Z along the third axis is the integral over the
surface of ‘
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MR. G. T. WALKER ON BOOMERANGS. 29

— AMu? 4+ 2 4+ 2 (x + scos ¢p)vo, — 2 (y — s sin ¢) uw,
+ {2 + ¥* + 2s(w cos p — y sin P) + 52} w,?]

X [(-} + ~:/_—> cos qu fu — (yv— § sin ¢) wy} — <—;~ + ~Z—> sin ¢ {v + (z + s cos ¢) w;}
+ w — (x + s cos ¢) wy + (y — ssin P) wl] .

This may be regarded as the sum of three forces: (1) Z, the force which is exerted
on a boomerang without distortion, (2) Zl due to the roundmg, (3) Z, due to the
tvvlstmg

Denoting by brackets () the operation of takmg the mean value over the area of
the boomerang, we shall adopt the notation

(m2) = K22’ (yz) = K12’ (mS) = K33; (my2) = K4<3’

(@) = x*, (@) = x', () = w7,

(ysing) =1, (wysing)=1> (y*cos¢)=17

(@®y sin p) = 1}, (wy’cos ) =13 (y°sin ) =17,

(Pysing) = I, (2PyPcosd) =1, (wysing) =1, (y*cosd) =l
(aby sin ¢ + a®y® cos ¢ + %P sin p + yt cos ) = lﬁ{

(s? cos? ¢) = my?, (s*sin® ) = m'?,

(s%x cos® ) = m3, (P sin?p) = m'% (s’ sin ¢ cos ¢) = m,?,
(8% cos® p) = mgt, (sPa*sin® @) = m’st, (s%ysin ¢ cos ¢) = m,t,
(s%* cos® ) = my*,  (s%°sin® ) = m'yf,

(s sin? ¢) = m5, (s*%ysin ¢ cos ¢) = my, (say® cos® ) = mg,

(s*xy? sin® ¢p) = m'5,  (s%3 sin ¢ cos @) = m,’.
Then for a plane surface we find at once
Z, = — )8 [(»* + ’1)2) w — 2 (kPuw; + k) w3 + § (k7 + k) w — (k° + 1) 05} 0?]

where S is the area, and terms in s* have been omitted since they are multiplied by
the small terms w, w,, w,.
The rounding produces a force

Zy= — 2)\de {(# — ywy) cos qS — (v + @w;) sin d)} fuwgsin ¢ + 'Uwa cos ¢
4 (vcos ¢ — ysin ¢) g}

= 1—2’—} Suaw, {(m'2 — m@)v 4 (m'3— m?® 4+ 2my®) wy}.
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30 MR. G. T. WALKER ON BOOMERANGS.

Due to the twisting we have

Zy=— “[dsy w4 02+ 2 (20 — yu) oy + (@ + ) 0’} {(v — yo) cos b
— (v + ww;)sin ¢}
= 2;' S [{Zl") + (L2 4+ 1P o} (W@ 4 0*) 4 (817 + 2% + 1) w0 + 2 (6% + L20?) o

+ (G + I+ I - 1) ‘”ss.l*
The resultant couple abont the first axis will be the integral over the surface of

— &kv; (lu, -+ mv; + w)) — (y — ssin ¢) M (u* + 0,%) (lu, + mv, + w,).

As before this may be divided into three portions, of which the first, on a plane
boomerang, is

Fy= — de (w — xwy + yo) [k (v + 2og) + Ay {u® + 0° + 2 (20 — yu) wy,
+ (@ + o) o)} ],

in. which terms in s? have been omitted as before.
Therefore,

Fo= Sw (= «v 4 2\« ’05u) -+ Swyo, (kk,® — 2k, 1)
— ASa; {r)® (v + v?) + 263050 + (ke* + ) 05*).

F, = — fclS %2 [[ng cos ¢ + N {2yw; (v sin & + v cos ¢) + 20’ (x cos ¢ — y sin ¢)
— sin ¢ (v? + 0¥ + 2001 — 200y + 70 + v, }]
X [(u — yoz) cos ¢ — (v + @w,) sin qS]]

S -
== [emoPuwg + 2hwg 2m3u 4 (m/ 3 —m,2) v} N (1P 0) { (/' 3 +meP) g +m’ v}
A+ Mvw(8m/ st — 2mt—2m 4 8m/ 1) 4 howg¥(m S —miS — 2mg® 4 3m' P+ 3myF) ],
‘while :
F, = —i« f dS[ — uycos ¢ Ay (u? + 1* + 2002 + 2%0,® + 120,%)}
+ ¥ (wsy cos ¢ + vsin d + wx sin @) { « (v + wgz) — 2Nwuy®} ]

= K,rs {l.l,”é + (20 + Z32) ws? + (l43 + 1) 0}

— M {17 (w® 4+ %) + 2 (1% + %) wgv + (I* + 20* + 8135%) ws?).

T
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ME. G. T. WALKER ON BOOMERANGS. 31

The couple about the axis 2 is the integral of

(luy + mo; + w)) [k, + (@ 4 s cos ¢) X (w2 + v,2)],
leading to

Gy = Sw[ku + hog {2120 + (k® + ) 03} ] — Sw,0, (ki)® + 2Nk, )
= So {k" (u? + v°) + 2kl + (k" + ') w5’}

S 7 0 ’ 9 B
, [— kog {m/ o4 (m® +my®) wg} 4 Au {m? (v + v*) 4+ 2040 (2m% + my> — m'}?)

+ Bwy? (my* + myt) — 2 (mgt + ms*) 0?3 ]’

G, =

Gy= — 2 Lo + (i 2 o) — P02 4 ) (L + Loy + Loy
+ 205 (120 + 1297 + (8L + 20t + 1Y) 0 + lyfog).
The equations of angular motion are
A‘:’I - (B— Q)w2m3 = F,
By — (C — A) wga, = G,
Co; — (A — B) oo, = 0.
Neglecting the product w;w,, we see that w, may be replaced by 7, a constant.

Also, for a thin flat body, C is sensibly equal to A + B, and if m be the mass per unit
area, we have

A = Smk?, B = Smk,?,
so that our equations become

Smw,? (w] + nw,) = F,

Smiy? (wg — nw,) = G.

We shall first of all discuss the motion of an undistorted boomerang free from the
action of gravity., If we revert to our former axes OX, OY, OZ, of which OX is
the projection on the primary plane of the direction of motion, we shall obtain as the
equations of translation,

U+ wQy = 0,
— wQ, + U, = 0,
m(w — Uny) = 22,

Hence, neglecting squares, U is constant, and #;, the angular velocity of the axes,


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

32 MR. G. T. WALKER ON BOOMERANGS.

is zero. Thus we are justified in replacing u, v by Usin nt, Ucos nt. We shall
then have

w, = Q, sin nt — O, cos nt 0
wy = 0, cos nt + Q, sin nt ’
and on multiplying the former rotation equations by
sin nt  cos nt¢
PR PR
and adding, we get
. sin n¢ cos nt
m (9, + 2n0,) = F, St + G, Sep = = P, say,
cos ni sin n¢
m(‘QQ-—Zan) = —F, S + Gy ¢ 5= Qo
Sk SIC
m (w — UQ,) = ¢ =R,
Now
~ ¥ D YLl R
P — 9\ _ 9 K Ky e A A 7 5 6 )
2mUw — \U20, + ; <K]2 + pE ny = 5 pr + pE n*Q,
1 1 .
+ AELT A nzw cos nt + — ( -, <~—5> wU sin 2n¢
K K
] 1
wn /cg’" % . ]
+ 5 (05— ;3) (0, sin 2nt — Q, cos 2nt)
1 2
A 2 1y . /'3 1
—_— 3 3 —_— = e y 2 il
5 K nU [Ql (cos nt — cos 3nt) <M12 + K22> + Q,sin nt <\K12 - xf)
. 1 1°
— ), sin 39t ( ;c;é -+ ;;5):]
Aord . .
~ 5w nU [Q, (3 cos nt + cos 3nt) + Q, (sin nt 4 sin 3nt)]
A e S : .
+ 7(\ P ) (0, cos 2nt 4 Q, sin 2nt).
Similarly
. Tw /1 1 K [Kp P A et ot kot
= — \NU20, 4 ““Y (1 L 2 K 1 I A T S L DY)
@ U0, + 2 <"2+"22> 2<"12+"2> h = 2< K + ry? >an,

together with terms whose coefficients involve circular functions of nt.
Also

Ro= — A {U2 4 (k) + 02) 22} w + A (2 + &%) nUQ,
— A (#)® — k") nU (Q, cos 2nt + Q, sin 2nt)
+ X (ks® + 7)) #? (Q, cos nt + Q, sin nt).
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If all the terms be collected on the same side there result three equations of the
form
a, @y 4 0,0y + cyw =0,
4,0+ 0,0, 4 cow = 0,
asQ, + b0, + cow = 0,

in which the coeflicients may contain the operator d/d¢, or circular functions of the
time.

The equations giving the motion under gravity of a boomerang with the two
distortions will differ from these in three ways. -

First of all, if I'm’n’ be the direction cosines of a line drawn vertically downwards,
the equations of translation will be

m (U + wy) = mgl,
m (— wQ, + U) = mgm’,
m (i(: — UQ,) = Ry + R, + R, + mgn/,

P, P, Q. Qu R, R, bearing to Z,, Z, the same relations as Py, Q, R, to Z,.
From the second equation

gnv’
03 = l’[_j_ 3
and from the first
U = gl.

Now 0 in numerical value is comparable with 1, and n with 80, so that the
additional terms in (1) due to the consideration of 6, will be of negligible magnitude.
Again, {" is small when the path is nearly in a horizontal plane ; hence, in considering
the steady motion corresponding to a particular portion of the path, the change in U
need not trouble us.

When the forces due to the distortions—and these will not involve Q,, Q,, w—are
introduced, we obtain

@ + 0,0, + cow =Py + P,
Q) + 6292 +oew=Q; + Q,
a3y + 0;Q, + csw = R, + R, — myg cos 6,

where @ is the angle between the axis of revolution and the upward vertical, and 6/n
being small, we shall treat ¢ in the third equation as constant.
We next regard the right-hand sides of these equations as expanded in the form
VOL, CXC.—A, F
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A, 4 B, sin nt + C, cos nt + D, sin 2nt 4+ E, cos 2ut 4+ F', sin 3nt 4 G| cos 3,
A, 4+ B, sinnt 4 C, cos nt + D, sin 2nt ++ E, cos 2nt + I, ¢in 3nt + G, cos 3ut,
A, + B, sin nt 4 C; cos nt + Dy sin 20t 4+ E; cos 2ul,

i which A, B, C ... are constants.
On substituting the values of F,, F,, we find

A = el g
1= = ) 9 + P

“p \ Ky Ko®
AU (/1P N [+ ‘?L, + 3ht | 8L+ 714 + 5" 7}
—_ R N [ N n?
i (et ) T ()
AU [/m/® | omy 9 I/t — 2t — 2mgt 4 S/t gt — 2m gt — 2t + 37}1-54) .O}
A, = e - n®
b=l U o
k [20L2 + 12 1,2+ 20,
_— : : v
27 { Ky + K, nU,
7\% ; 4 :
A, = — {‘? (12 + 1) U + (I + I+ 1+ 1) n*} — myg cos 6.

Our equations may now be satisfied by the infinite series

Q, = a, -+ By sin ut + y, cos nt + & sin 2nt 4 . .
Q, = a, + B, sin nt + vy, cos nt 4+ .
w = ay + By sin nt 4 vy cos né + ..

which are convergent since the ratio of the coefficients of sin 7 + 1 at and cos » + 1 nt
to those of sin 71t and cos 1nt proves to be ultimately comparable with «/mr.
If we adopt the notation

2 ket + xt x5t + Kip\ w 2
U,V + < 4 ,,,,:,,v . + N ’3‘ ) ~‘l—)" fovnd 1‘Il~’

K ey
U* + (k" + k%) 0’ = U4
/o 2 2
r [, &,
m — ‘( 2 L) = m
4 \rey? + /‘z“)> v
L 1 |
/c}‘ + PR

the non-circular terms on the left-hand sides become
mQ, + \U2Q, -+ 200, — 2mUw,
. . xUw
- 2mnQ, + mQ, 4+ AU, — o

=\ (kF 1) U0, — mUQ, 4 mw -+ AU w
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Hence the substitution of the series for Q,, Q,, w gives as the equations for
0Ly, Oy, Olg '

AU 2oy 4 2mynay, — 23\nUag 4+ f1= A

. (@)

71
— 2myne; + AU Pay — o + /o= A, r
!
J

— A2+ k) nUa; — mUay 4+ N 20y + f; = A,

where f,, /5, f; ave linear functions of a, B, y .. . in which the constant coefficients all
contain A or k, but not the numerically more important quantity m, as a factor.

In order, then, to obtain a steady motion about which minute oscillations are going
on, we neglect the terms f;, fi, f5 in our first approximation. This is equivalent to
taking two points on the path at an interval corresponding to a number of complete
revolutions (say twelve), and asserting that the angular change in the axis of rotation
is that due to the non-periodic portion or mean of the couples in action during that
period.

Stability.

For steady motion to be possible it is necessary that the values of Q,, Q,, w, gn en
by the equations
mQ, + \U2Q, + 2mnQ, — 2MUw = 0
— lnnQ, + m('22 +\U 20, — -’CB,w =0
— X (1)* + 1)) nUQ, — mUQ, 4 maw 4+ NU2w = 0

shall be always small.
On inserting numerical values, it appears that this condition is satisfied if the ratio
of n to U be large enough to give the determinant

AUR 2mn,  — 20U

| c U
| — 2mn, AU — =

=Mt kN U, —mU, AUR
a positive value.

If 2a = = — B where 8 is small, the motion is unstable unless with actual values,
n > 270. »

When 2a = 120° the critical value of n is 26, and when the arms are at right
angles, stability is secured when n = 22.
* These values are rather larger than those found necessary in practice, but their
mutual relations are correct. The first time that a beginner attempts it, he can make
a boomerang whose arms are at right angles travel steadily, but the more cbtuse the
¥ 2
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36 MR. ¢ T. WALKKER ON BOOMERANGS.

angle, the more difficult is the throwing of the implement, and when 2a = 150° or
upwards, and the material of which the boomerang is made is light, throwing it
against a wind requires skill of a high order.

The values of the constants ,, mg, k) . . . have been calculated for boomerangs whose
arms are 36 centims. in length and 5 centims. in width, the mass per unit area being
five-eighths of a gramme.

When these constants are substituted in the equations of steady motion, it is found
that for a boomerang whose arms are at right angles, corresponding to the values

U = 2000, n = 40, kU =7, AU? = 5,

are the velocities

Ql.-:-——-—+6—1—q+1 9 cos 0

4 2200
Qg_jﬂvqjm«(} 8 cos R ()}
wz(ﬁq-——w—o-—-wwcosﬂ

P T »,

If we make n = 30, the values of Q,, Q,, w given by the equations are too large ;
this is due to the fact that the theoratical limit of stability (n = 22) is not sufliciently
exceeded.

If the value of xU be taken as 5 instead of 7 (these being estimated inferior and
superior limits of «U corresponding to ¢ = 6, f=1/6, and ¢ = 7, f = 1/5) there
appear

270 ™
le~«~—+~7—+cosﬁ
2.9 2100
Dz=7~7—-5.70089 } e e e (4)
e 460000
w._—_-@;g—- TO — 1400 cos 0

The velocities corresponding to a larger spin

U = 2009, i = 50, kU =25, A\U? =5,

are
2. 1 h
Q= — 2.8 + 100 ;.4 cosd
p T
. 1.2 1200 -
=20 3.9 Co 5).
Q, ) . 3.2co80 ¢ (5)
240 215000
w— ST T 790 cos @
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It is interesting to compare these results with those belonging to a boomerang
whose arms include an angle 120°.
Thus, taking
20 = 120°, U = 2000, = =50, «xU =7, AU"=5,
we obtain

700 h
Q, = ———+/———+] 3 cos 0
3.8 2000 . .
02-7“ T-—&.lcosﬁ P () X
20 80000
10=L—-—9—9—QQ—-—-720 cos 0
P T J

while the second estimate of kU, namely 5, yields

10. 10
Ql=——0;)-z+a-+cos0
4.6 2300
Q=" =" —=38.5c080 > . (7).
e T .
w =300 _ 4409»0(—)—-850 cos 0
P T J

The values of p and 7 in practice are usually comparable with 20 and 800
respectively.

That the form of the equations is correct, at any rate as regards a ﬁrst approxi-
mation, is confirmed by the experience gained in making and throwing upwards of
seventy boomerangs of different weights, shapes, and sizes.

Tf, for example, one of these does not curl sharply enough to the left (s.e., Q, is
negative, but not numerically large enough), it is found that increasing the twist
(t.e., diminishing 7) will produce the desired effect. A further result will be an
increase in Q, and a cousequent tendency to “sky;” this may be corrected by
making the difference of curvature of the two surfaces more pronounced ; a diminution
in p will thus bring about a diminution of ;.

Some of these implements were made with the express object of verifying
particular terms. If there be no twist, and 6 = n/2, while p is not extremely large,
Q, is negative and Q, positive; if, on the other hand, p is infinite, but 7 is finite and
positive, 0, is positive and Q, is negative.

From experiments made in this manner, with a somewhat smaller spin than that
assumed above, I have deduced the formule

——+7£)-(~)+200s0)

5 1900 _esd |
|

9, =

« (@),
h=Tm Ty

-
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38 MR. G. T. WALKER ON BOOMERANGS.

in which, owing to the experimental difficulties, the numerical values of the coefti-
cients may be regarded as lacking in accuracy ; they may however be relied upon as,
at any rate, of the correct order of magnitude. Of w I have observed nothing except
that it does not exceed 500, and is probably smaller and negative.

A comparison of the theoretical results (8) and (4), or (6) and (7), obtained with
different data for kU will show that the formule, as calculated, must be looked upon
as giving only a rough estimate of the motion regarded quantitatively ; but, in spite
of the calculated value of w being excessive (between 600 and 1200 when cos § = 3),
it will be seen that the discrepancies are of the kind that might be anticipated, and
that the theoretical equations are qualitatively consistent with the experimental
results given in (8).

Another piece of evidence is that furnished by non-returning boomerangs. If it
be desired to make an efficient missile that shall travel in as straight a path as
possible, it is natural to manufacture a boomerang without twist and with the
curvature of the two faces the same. It is this form that many of the cruder
Australian weapons possess.

Experiment and theory alike show, however, that if initially @ have a positive
value less than a right angle (z.c., the natural method of throwing be adopted), then
Q, will be positive and Q, will be negative as long as @ is less than a right angle:
when the plane of rotation has reached and passed through the horizontal position
Q, remains negative. The shape of the path is indicated in fig. 5, and it will be seen
that it is far from straight.

Fig. 5.

TN

Plan.

A path in one vertical plane could be secured by throwing an undistorted weapon
with its plane of rotation accurately vertical; the least inclination, however, would
grow, and the plane of initial motion be departed from ; in any case, except for the
reduction in the resistance of the air, the path in a vertical plane would yield no
greater range than would be afforded by a spherical missile of the same weight.

‘We might attain the same end by designing the shape so as to make 0,, 0, small
when 6 = 0, and throwing the boomerang with its plane approximately horizontal,
In that case the plane would remain horizontal, and the axis OX in it would soon be
pointing in a direction slightly above the tangent to the path; a much longer flight
would then be maintained, as the effect of gravity would be balanced by the upward
pressure of the air on the lower surface of the projectile.

It is interesting to notice that this is the method that experience has taught the
blacks to adopt. Their best non-returning weapons always have strongly developed
positive rounding (the more curved surface is uppermost when thrown) and often a
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small negative twist; examination of the equations will show that these distortions
will combine to produce the required results. An estimate of the efficiency of the
shape may be made from the fact that as far as my experience goes, a boomerang of
this type may be thrown more than twice as far as a spherical object of the same
weight.

In figs. 6, 7 are given thc plan and elevation of the path obtained with a boomerang

Fig. 7.

Elevation upon a vertical
plane through AC.

designed to continue in its circular route as long as possible. The arms of the imple-
ment are at right angles and the twist and rounding exaggerated a little ; the initial
plane of rotation is vertical, and as much energy as possible is 1mparted in the act of
throwing, while the aim is slightly uphill. -

The numerical value of Q, is somewhat increased and thai of ©, diminished, so that
when the weapon in its return journey is over the thrower’s head, its axis of rotation,
instead of being vertical, is inclined a little towards the inner side of the curve that
it has described ; the forward velocity, though reduced, being still unexpended, the
original curve is continued, and the existence of Q, implies that the plane of rotation
will tilt slightly upwards and the tendency to fall be overcome.

After the end H of this second ldop has been reached, the forward velocity has still
further diminished, and gravity brings the boomerang, still spinning fast in a nearly
horizontal plane, to the ground near the starting-point. I haye obtained second loops,
which were thirty yards in length when measured horwont‘u]y, while, if the point H
be high enough in the air, a thnd loop will be described before the boomerang alights.

Fig. 8. o Iig. 9.

Plan. ’ . Elevation along CAG.

In figs. 8, 9 is represented the ﬂlght of a- boomelang, of which the arms form an
angle which is larger by about thirty degrees than that of the previous case. The axis
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Fig. 10,

/‘/—"'\~

7
Fig. 11.

[ 24
7 T T—
21 8 TS n

/ A7
- ,/ / Elevation on the plane through BD.
//
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Fig. 12

P]an. Secale Ti;’hﬁ‘

Elevation on a plane parallel to DB,


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. G. T. WALKER ON BOOMERANGS. _ 41

of rotation may point at the outset rather upwards, and the initial direction of
motion is slightly uphill.

As the theoretical angular velocities indicate, there will be an increase in the value
of 0,, and this leads to the plane of rotation being horizontal when the implement
passes over the thrower’s head at E. The angular velocity along the axis OX will
then turn the path to the right along EF, while 0, implies that, the body rises from
E to F. After a short time the forward velocity has diminished so far that the
descent from F to the ground is made quite slowly, under the influence of gravity
checked by the rotation of the boomerang in a nearly horizontal plane.

Figs. 10, 11 illustrate the magnitude of the changes in the trajectory that are
rendered possible by small variations in the shape of the missile. This path was
traced by a boomerang which subsequently warped to a slight extent in such a way
as to increase the twisting : the natural flight then became the figure of eight of the
two previous diagrams.

Through the kindness of Mr. O. EckENsTEIN, I have recently had the opportunity
of seeing and throwing some boomerangs made by him, in which rounding was
present, but no twisting ; the angle between the arms was considerably more obtuse,
the size increased, and the weight doubled.

An examination of the equations (3-7) will show that if the value of cos @ be
increased, the term due to gravity might be expected to replace for the most part
that due to the twisting ; further, as the angle between the arms is larger, a given
amount of rounding will produce a greater effect in diminishing Q,.

When the proportions are rightly chosen, T have not found it difficult to obtain a
reburn path ; the plane of rotation is initially inclined at 15° instead of 90° to the
horizon, and with a decidedly smaller forward velocity as much spin as possible must
be imparted.

In the hands of one accustomed to its use, a boomerang of this type is capable of
extremely interesting flights. For the remarkable diagrams (figs. 12, 13) which
illustrate one of these, I am indebted to Mr. ECKENSTEIN.

VOL, ¢X(,—A. G
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